BOARD MODEL PAPER - 1

MATHS - 2B

(Board of Intermediate Education Model Paper)

SECTION - A

I. Answer ALL the following Very Short Answer Questions:

 $[10 \times 2 = 20]$

- 1. Find the power of the point P(-1, 1) with respect to the circle $x^2 + y^2 6x + 4y 12 = 0$.
- 2. State the necessary and sufficient condition for 1x + my + n = 0 to be normal to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$.
- 3. Find the angle between the circles $x^2 + y^2 12x 6y + 41 = 0$ and $x^2 + y^2 + 4x + 6y 59 = 0$.
- 4. Find the equation of the parabola whose focus is (1, -7) and vertex is (1, -2).
- 5. Find the angle between the asymptotes of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$.
- 6. Evaluate $\int \frac{1}{(x+3)\sqrt{x+2}} dx$.
- 7. Evaluate $\int \frac{\sin^4 x}{\cos^6 x} dx$.
- 8. Evaluate $\int_{0}^{1} \frac{x^2}{x^2 + 1} dx$.
- 9. Evaluate $\int_{0}^{\pi/2} \frac{\sin x^2 x \cos^2 x}{\sin x^3 x + \cos^3 x} dx$.
- 10. Find the order and degree to the differential equation $\left[\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^3\right]^{\frac{6}{5}} = 6y$.

SECTION - B

II. Answer any FIVE of the following Short Answer Questions:

- 11. Find the pole of the line 3x + 4y 45 = 0 w.r.t the circle $x^2 + y^2 6x 8y + 5 = 0$.
- 12. Find the equation of the circle passing through the points of intersection of the circles $x^2 + y^2 8x 6y + 21 = 0$, $x^2 + y^2 2x 15 = 0$ and (1, 2).
- 13. Find the length of major axis, minor axis, latusrectum, eccentricity of the ellipse of $9x^2 + 16y^2 = 144$.
- 14. Show that the point of intersection of the perpendicular to an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b) lies on a circle.
- 15. Find the equation of the tangents to the hyperbola $3x^2 4y^2 = 12$ which are (i) Parallel to (ii) Perpendicular to the line y = x 7.
- 16. Find the reduction formula for $\int_{0}^{\pi/2} \sin^{n} x \, dx$.
- 17. Solve: $(1 + y_2) dx = (\tan^{-1} y x) dy$.

III. Answer any FIVE of the following Long Answer Questions.:

 $[5 \times 7 = 35]$

- 18. Show that the points (1, 1), (-6, 0), (-2, 2) and (-2, -8) are concyclic.
- 19. Find the direct common tangents to the circles $x^2 + y^2 + 22x 4y 100 = 0$, $x^2 + y^2 22x + 4y + 100 = 0$.
- 20. If y_1 , y_2 , y_3 are the y-coordinates of the vertices of the triangle inscribed in the parabola $y^2 = 4ax$ then show that the area of the triangle is $\frac{1}{8} |(y_1 y_2) (y_2 y_3) (y_3 y_1)|$ square units.
- 21. Evaluate $\int \frac{9\cos x \sin x}{4\sin x + 5\cos x} dx$.
- 22. Evaulate $\int \frac{dx}{(1+x)\sqrt{3+2x-x^2}}$.
- 23. Evaluate $\int_0^1 \frac{\log(1+x)}{1+x^2} dx$.
- 24. Solve $\frac{dy}{dx} = \frac{2x + y + 3}{2y + x + 1}$.

* * * * * * *

SOLVED MODEL PAPER - 2

MATHS - 2B

(Board of Intermediate Education Model Paper)

SECTION - A

I. Answer ALL the following Very Short Answer Questions:

 $[10 \times 2 = 20]$

- 1. Find the Parametric equations of the circle $x^2 + y^2 + 6x + 8y 96 = 0$.
- 2. Find the equation of normal at P(3, -4) on the circle $x^2 + y^2 + x + y 24 = 0$.
- 3. Find k if the paris of circles are $x^2 + y^2 6x 8y + 12 = 0$, $x^2 + y^2 4x + 6y + k = 0$ are orthogonal.
- 4. Find the coordinates of the point on the parabola $y^2 = 2x$ whose focal distance is 5/2.
- 5. If e, e₁ are the eccentricities of a hyperbola and its conjugate hyperbola, then prove that $\frac{1}{e^2} + \frac{1}{e_1^2} = 1$.
- 6. Evaluate $\int \sqrt{x} \log x \, dx \, \operatorname{on}(0, \infty)$.
- 7. Evaluate $\int e^{x} \left(\frac{1 + x \log x}{x} \right) dx$.
- 8. Evalute $\int_{1}^{5} \frac{dx}{\sqrt{2x-1}} dx$.
- 9. Evaluate $\int_{0}^{a} \sqrt{a^2 x^2} dx$.
- 10. Find the order and degree of the D.E $x^{1/2} \left(\frac{d^2y}{dx^2} \right)^{1/3} + x \frac{dy}{dx} + y = 0$.

SECTION - B

II. Answer any FIVE of the following Short Answer Questions:

- 11. Find the eugation of a circle which passes through (4, 1), (6, 5) and having the centre on 4x + 3y 24 = 0.
- 12. If the two circles $x^2 + y^2 + 2gx + 2fy = 0$, $x^2 + y^2 + 2g'x + 2f'y = 0$ touch each other, then show that f'g = fg'.
- 13. Find the equations of the tangent and normal to the ellipse $9x^2 + 16y^2 = 144$ at the end of latusrect in the first quadrant.
- 14. Prove that the condition for the line y = mx + c to be a tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is $c^2 = a^2m^2 + b^2$.
- 15. Find the centre, eccentricity, foci, length of latus rectuom and equations of the directrices of the Hyperbola $16y^2 9x^2 = 144$.
- 16. Evaluate $\int_{-3}^{+3} (9 x^2)^{3/2} dx$.
- 17. Solve $\frac{dy}{dx} + \frac{y^2 + y + 1}{x^2 + x + 1} = 0$.

III. Answer any FIVE of the following Long Answer Questions.:

 $[5 \times 7 = 35]$

- 18. Find the equation of the circle passing through the three points (1, 2), (3, -4), (5, -6).
- 19. Show that the circles $x^2 + y^2 6x 2y + 1 = 0$ and $x^2 + y^2 + 2x 8y + 13 = 0$ touch each other. Find the point of contact and the equation of the common tangent at their point of contact.
- 20. Find the equation of the parabola whose axis is parallel to the y-axis and passing through the points (4, 5), (-2, 11), (-4, 21).
- 21. Evaluate $\int \frac{3\sin x + \cos x + y}{\sin x + \cos x + 1} dx$.
- 22. Evaluate $\int \frac{x^3 2x + 3}{x^2 + x 2} dx$.
- 23. Let AOB be the positive quadrant of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with OA = a, OB = b. Then show that the area bounded between the chord AB and the arc AB of the ellipse is $\frac{(\pi 2)ab}{4}$.
- 24. Solve $(x^2y 2xy^2) dx = (x^3 3x^2y) dy$.

SOLVED MODEL PAPER - 3

MATHS - 2B

(Board of Intermediate Education Model Paper)

SECTION - A

I. Answer ALL the following Very Short Answer Questions:

 $[10 \times 2 = 20]$

- 1. Find the equation of the circle passing through the point (-2, 14) and concentric with $x^2 + y^2 6x 4y 12 = 0$.
- 2. Find a if $2x^2 + ay^2 3x + 2y 1 = 0$ represents a circle and also find its radius.
- 3. Find the angle between the circles given by the equations $x^2 + y^2 + 6x 10y 135 = 0$, $x^2 + y^2 4x + 14y 166 = 0$.
- 4. Find the equation of the tangent and normal at the positive end of L.R on the parabola $y^2 = 6x$.
- 5. If the eccentricity of a hyperbola is 5/4, then find the eccentricity of its conjugate hyperbola.
- 6. Evaluate $\int \frac{1}{1+\sin 2x} dx$.
- 7. Evaluate $\int e^x (1 + \tan^2 x + \tan x) dx$.
- 8. Evaluate $\int_{0}^{\pi/2} \frac{\sin^{2} x \cos^{2} x}{\sin^{3} x + \cos^{3} x} dx.$
- 9. Find the area enclosed by the curves $y = x^2 + 1$, y = 2x 2, x = -1, x = 2.
- 10. Find the general solution of $\frac{dy}{dx} = \frac{2y}{x}$.

SECTION - B

II. Answer any FIVE of the following Short Answer Questions:

- 11. Find the length of the chord intercepted by the circle $x^2 + y^2 8x 2y 8 = 0$ on the line x + 1 + 1 = 0.
- 12. If the straight line 2x + 3y = 1 intersects the circle $x^2 + y^2 = 4$ at the points A and B, find the equation of the circle having AB as diameter.
- 13. Find the equations of the tangents to $9x^2 + 16y^2 = 144$, which make equal intercepts on the coordinate axes.
- 14. If PN is the ordinate of a point P on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the tangent at P meets the x-axis at T then show that (CN)(CT) = a^2 where C is the centre of the ellipse.
- 15. Find the equation of the tangents to the hyperbola $x^2 4y^2 = 4$ which are i) parallel to and ii) perpendicular to the line x + 2y = 0.
- 16. Evaluate $\int_{0}^{a} x(a^{2}-x^{2})^{7/2} dx$.
- 17. Solve $\frac{dy}{dx}$ -y tan x = e^x sec x.

III. Answer any FIVE of the following Long Answer Questions.:

 $[5 \times 7 = 35]$

- 18. Show that the points (1, -6), (5, 2), (7, 0), (-1, -4) are concyclic and find the equation of the circle on which they lie.
- 19. If the chord of contact of a point P with respect to the circle $x^2 + y^2 = a^2$ with centre O is cutting the circle at A, B such that $\angle AOB = 90^0$, then show that P lies on the circle $x^2 + y^2 = 2a^2$.
- 20. Find the equation of the parabola whose focus is (-2, 3) and directrix is the line 2x + 3y 4 = 0. Also find the length of the latusrectum and the equation of the axis of the parabola.
- 21. Evaluate $\int \frac{1}{(1+\sqrt{x})\sqrt{(1-x^2)}} dx$.
- 22. If $I_n = \int \cos^n x \, dx$, then show that $I_n = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n} I_{n-2}$ and hence deduce the value of $\int \cos^4 x \, dx$.
- 23. Evaluate $\int_{0}^{1} x Tan^{-1} x dx$
- 24. Solve $\frac{dy}{dx} = \frac{3y 7x + 7}{3x 7y 3}$.

* * * * * * * * * *

SOLVED MODEL PAPER - 4

MATHS - 2B

(Board of Intermediate Education Model Paper)

SECTION - A

I. Answer ALL the following Very Short Answer Questions:

 $[10 \times 2 = 20]$

- 1. If the length of the tangent from (5, 4) to the circle $x^2 + y^2 + 2ky = 0$ is 1, then find k.
- 2. Find the equation of the polar of (1, -2) with respect to circle $x^2 + y^2 10x 10y + 25 = 0$.
- 3. Find the radical centre of the circles $x^2 + y^2 + 4x 7 = 0$, $2x^2 + 2y^2 + 3x + 5y 9 = 0$ and $x^2 + y^2 + y = 0$.
- 4. Define latus rectum of a parabola. What is the length of the latus rectum of $y^2 = 4ax$?
- 5. Find the value of k if 3x 4y + k = 0 is a tangent to the hyperbola $x^2 4y^2 = 5$.
- 6. Evaluate ∫ sin mx sin nx dx.
- 7. Find $\int \frac{(\log x)^2}{x} dx$.
- 8. Evaluate $\int_{-\pi/2}^{\pi/2} \sin|x| dx$
- 9. Find the value of $\int_{0}^{2\pi} \sin^2 x \cdot \cos^4 x \, dx$.
- 10. Find the I.F. of the D.E. $(\cos x) \frac{dy}{dx}$ +ysinx = tanx by transforming it into linear form.

SECTION - B

II. Answer any FIVE of the following Short Answer Questions:

- 11. Find the condition that the tangents drawn from the exterior point (0, 0) to $S = x^2 + y^2 + 2gx + 2fc = 0$, are perpendicular to each other.
- 12. Show that the circles $x^2 + y^2 8x 2y + 8 = 0$, $x^2 + y^2 2x + 6y = 0$ touch each other and find the point of contact.
- 13. Find the condition for the line lx + my + n = 0, to be a tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- 14. Prove that the equation of the chord joining the points α and β on the ellipse $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ is

$$\frac{x}{a}\cos\left(\frac{\alpha+\beta}{2}\right) + \frac{y}{b}\sin\left(\frac{\alpha+\beta}{2}\right) = \cos\left(\frac{\alpha-\beta}{2}\right)$$

- 15. Prove that the point of intersection of two perpendicular tangents to the hyperbola $\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1 = 0$, lies on the circle $x^2 + y^2 = a^2 b^2$.
- 16. Find the area of the region enclosed by the curves $y = 4x x^2$, y = 5 2x.
- 17. Solve $y^2 dx + (x^2 xy) dy = 0$.

III. Answer any FIVE of the following Long Answer Questions.:

 $[5 \times 7 = 35]$

- 18. Find the values of c if the points (1, 2), (3, -4), (5, -6), (c, 8) are concyclic.
- 19. Find the equations of circles which touch 2x 3y + 1 = 0 at (1, 1) and having radius $\sqrt{13}$.
- 20. Find the coordinates of vertex, focus, equation of the directrix and axis for the parabola $y^2 + 4x + 4y 3 = 0$.
- 21. Evaluate $\int \frac{1}{1+\sin x + \cos x} dx$.
- 22. Obtain the reduction formula for $I_n = \int \cos e c^n x \, dx$, n being a positive integer, $n \ge 2$ and deduce that the value of $\int \cos e c^5 x \, dx$.
- 23. Evaluate $\int_{0}^{\pi} \frac{x \sin x}{1 + \sin x} dx$.
- 24. Solve the differential equation (2x + y + 1) dx + (4x + 2y 1) dy = 0.

* * * * * * * * * * * *

PRACTICE MODEL PAPER - 5

MATHS - 2B

(Board of Intermediate Education Model Paper)

SECTION - A

I. Answer ALL the following Very Short Answer Questions:

 $[10 \times 2 = 20]$

- 1. If $x^2 + y^2 + 2gx + 2fy 12 = 0$ is a circle with centre (2, 3) then find (g, f) and its radius.
- 2. Find the value of k if the length of tangent from (5, 4) to $x^2 + y^2 + 2ky = 0$ is 1.
- 3. Find k if the pair of circles are $x^2 + y^2 + 2by k = 0$, $x^2 + y^2 + 2ax + 8 = 0$.
- 4. Find the equation of tangent to the parabola $y^2 = 16x$. inclined at 60° .
- 5. If e e₁ are the eccentricities of a hyperbola and its conjugate hyperbola, then prove that $\frac{1}{e^2} + \frac{1}{e_1^2} = 1$.
- 6. Evaluate $\int \sqrt[3]{\sin x} \cos dx$.
- 7. Evaluate $\int e^x (\tan x + \sec^2 x) dx$.
- 8. Evaluate $\int_{0}^{1} x \cdot e^{-x^2} dx$.
- 9. Evaluate $\int_{0}^{\pi/2} \frac{\sin^5 x}{\sin^5 x + \cos^5 x} dx$.
- 10. Find the order of the differential equation of the family of all circles with their centres at the origin.

SECTION - B

II. Answer any FIVE of the following Short Answer Questions:

- 11. Find the equations of the tangents to the circle $x^2 + y^2 4x + 6y 12 = 0$ and parallel to the line x + y 8 = 0.
- 12. Find the radical centre of the circles $x^2 + y^2 4x 6y + 5 = 0$, $x^2 + y^2 2x 4y 1 = 0$, $x^2 + y^2 6x 2y = 0$.
- 13. Find the equation of the ellipse, if focus = (1, -1), e = 2/3 and directrix is x + y + 2 = 0.
- 14. Find the equation of the ellipse in the standard form such that the distance between the foci is 8 and the distance between directrices is 32.
- 15. Tangents to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ make angles θ_1 , θ_2 with transverse axis of a hyperbola. Show that the point of intersection of these tangents lies on the curve $2xy = k(x^2 a^2)$ when $\tan \theta_1 + \tan \theta_2 = k$.
- 16. Find the area enclosed by the curves $y = x^2$ and $y = \sqrt{x}$.
- 17. Solve $\frac{dy}{dx} x \tan(y x) = 1$.

III. Answer any FIVE of the following Long Answer Questions.:

 $[5 \times 7 = 35]$

- 18. Find the equation of the circle passing through the points A(5, 7), B(8, 1), C(1, 3).
- 19. Show that the circles $x^2 + y^2 4x 6y 12 = 0$ and $x^2 + y^2 + 6x + 18y + 26 = 0$, touch each othe. Find the point of contact and common tangent.
- 20. Find the focus, vertex and equation of the directrix and the length of the latus rectum to the parabola $y^2 x + 4y + 5 = 0$.
- 21. Evaluate $\int \frac{dx}{x^3 + 1}$.
- 22. Evaluate the reduction formula for $I_n = \int \sin^n x \, dx$ and hence find $\int \sin^4 x \, dx$.
- 23. Evaluate $\int_{0}^{\pi/4} \frac{\sin x + \cos x}{9 + 16\sin 2x} dx$.
- 24. Solve $(1 + x^2) \frac{dy}{dx} + 2xy 4x^2 = 0$.

* * * * * * * * * * * *

PRACTICE MODEL PAPER - 6

MATHS - 2B

(Board of Intermediate Education Model Paper)

SECTION - A

I. Answer ALL the following Very Short Answer Questions:

 $[10 \times 2 = 20]$

- 1. Find the Parametric equations of the circle $x^2 + y^2 6x + 4y 12 = 0$.
- 2. Find the value of k if the points (4, 2), (k, -3) are conjugate w.r.to the circle $x^2 + y^2 5x + 8y + 6 = 0$.
- 3. Find the angle between the circles $x^2 + y^2 12x 6y + 41 = 0$ and $x^2 + y^2 + 4x + 6y 59 = 0$.
- 4. Find the vertex, focus, equation of the directrix and axis of the parabola $y^2 = 16x$.
- 5. If the eccentricity of a hyperbola is 5/4, then find the eccentricity of its conjugate hyperbola.
- 6. Evaluate $\int \frac{x^8}{1+x^{18}} dx$.
- 7. Evaluate $\int e^x \left(\frac{1 + x \log x}{x} \right) dx$
- 8. Evaluate $\int_{0}^{\pi} \sqrt{2 + 2\cos\theta} \, d\theta$.
- 9. Prove that $\int_{0}^{\pi/2} \sin^{n} x \, dx = \int_{0}^{\pi/2} \cos s^{n} x \, dx$.
- 10. Form the D.E corresponding to $y = cx 2c^2$ where c is a parameter.

SECTION - B

II. Answer any FIVE of the following Short Answer Questions:

- 11. Find the locus of P, where the tangents drawn from P to $x^2 + y^2 = a^2$ are perpendicular to eachother.
- 12. Find the equation of the circle passing through the points of intersection of the circles $x^2 + y^2 8x 6y + 21 = 0$, $x^2 + y^2 2x 15 = 0$ and (1, 2).
- 13. Find the eccentricity, coordinates of foci, Length of latus rectum and equations of directrices of the ellipse $9x^2 + 16y^2 36x + 32y 92 = 0$.
- 14. S and T are the foci of an ellipse and B is one end of the minor axis. If STB is an equilateral triangle, then find the eccentricity of the ellipse.
- 15. Find the euqations of the tangents to the hyperbola $3x^2 4y^2 = 12$ which are a) Parallel to b) Perpendicular to the line y = x 7.
- 16. Evaluate $\int_{0}^{\pi/2} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$
- 17. Solve $(x^2 + y^2) dx = 2xydy$.

III. Answer any FIVE of the following Long Answer Questions.:

 $[5 \times 7 = 35]$

- 18. Show that the points (1, 1), (-6, 0), (-2, 2) and (-2, -8) are concyclic.
- 19. Find the equation to the pair of transverse common tangents to the circles $x^2 + y^2 4x 10y + 28 = 0$ and $x^2 + y^2 + 4x 6y + 4 = 0$.
- 20. Find the equation of the parabola whose focus is S(3, 5) and vertex is A(1, 3).
- 21. Evaluate $\int \frac{\sin x \cos x}{\cos^2 x + 3 \cos x + 2} dx$.
- 22. Evaluate $\int tan^n x \ dx$, hence evaluate $\int tan^5 x \ dx$, $\int tan^6 x \ dx$.
- 23. Find the area enclosed by the curves $y^2 = 4x$ and $y^2 = 4(4 x)$.
- 24. Form the differential equation corresponding to the family of circles of radius r is given by $(x a)^2 + (y b)^2 = r^2$, where a abnd b are parameters.

* * * * * * * * * * *

PRACTICE MODEL PAPER - 7

MATHS - 2B

(Board of Intermediate Education Model Paper)

SECTION - A

I. Answer ALL the following Very Short Answer Questions:

 $[10 \times 2 = 20]$

- 1. Show that A(-3, 0) lies on the circle $x^2 + y^2 + 8x + 12y + 15 = 0$. Also find the other end of the diameter through A.
- 2. Find the value of k if the points (4, k), (2, 3) are conjugate w.r.t. the circle $x^2 + y^2 = 17$.
- 3. Show that the angle between the circles $x^2 + y^2 = a^2 x^2 + y^2 = ax + ay$ is $3\pi/4$.
- 4. Find the equation of the parabola whose focus is (1, -7) & vertex is (1, -2).
- 5. Find the angle between the asymptotes of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$.
- 6. Evaluate $\int \sec^2 x . \csc^2 x dx$.
- 7. Evaluate ∫Sin⁻¹x dx.
- 8. Evaluate $\int_{0}^{4} \frac{x^2}{1+x} dx$.
- 9. Evaluate $\int_{0}^{\pi/2} \tan^{5} x \cos^{8} x dx$
- 10. Find the I.F. of $x \frac{dy}{dx}$ -y=2x2 sec² 2x by transforming it into linear form.

SECTION - B

II. Answer any FIVE of the following Short Answer Questions:

 $[5 \times 4 = 20]$

- 11. Show tht the tangent at (-1, 2) of the circle $x^2 + y^2 4x 8y + 7 = 0$ touches the circle $x^2 + y^2 + 4x + 6y = 0$. Also find its point of contact.
- 12. Find the equation of the circle which cut orthogonally the circle $x^2 + y^2 4x + 2y 7 = 0$ and having the centre at (2, 3).
- 13. Find the condition for the line lx + my + n = 0 to be a tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$.
- 14. If a tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$ (a > b) meets its major axis and minor axis at M and N respectively

then prove that $\frac{a^2}{(CM)^2} + \frac{b^2}{(CN)^2} = 1$ where C is the centre of the ellipse.

- 15. A circle cuts the rectangular hyperbola xy = 1 in the point (x_r, y_r) , r = 1, 2, 3, 4. Prove that $x_1 x_2 x_3 x_4 = y_1 y_2 y_3 y_4 = 1$.
- 16. Evaluate $\int_{0}^{\pi/2} x^2 \sin x \, dx$
- 17. Solve $\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}$.

III. Answer any FIVE of the following Long Answer Questions.:

 $[5 \times 7 = 35]$

- 18. Find the values of c if the points (2, 0), (0, 1), (4, 5), (0, c) are concyclic.
- 19. Find the direct common tangents to the circles $x^2 + y^2 + 22x 4y 100 = 0$, $x^2 + y^2 22x + 4y + 100 = 0$.
- 20. Show that the common tangents to the circle $2x^2 + 2y^2 = a^2$ and the parabola $y^2 = 4ax$ intersect at the parabola $y^2 = -4ax$.
- 21. Evaluate $\int \frac{1}{(x-a)(x-b)(x-c)} dx$.
- 22. Find $\int x \sqrt{1+x-x^2} dx$.
- 23. Find the area of the region bounded by $y^2 = 4ax$ and $x^2 = 4by$.
- 24. Solve $\frac{dy}{dx} = \frac{3y 7x + 7}{3x 7y 3}$.

* * * * * * * * * *

PRACTICE MODEL PAPER - 8

MATHS - 2B

(Board of Intermediate Education Model Paper)

SECTION - A

I. Answer ALL the following Very Short Answer Questions:

 $[10 \times 2 = 20]$

- 1. if $x^2 + y^2 4x + 6y + c = 0$ represents a circle with radius 6, find the value of c.
- 2. Find the value of k if the points (1, 3), (2, k) are conjugate w.r.to the circle $x^2 + y^2 = 35$.
- 3. Find the equation of the common chord of $(x a)^2 + (y b)^2 = c^2$, $(x b)^2 = c^2$, $(x b)^2 + (y a)^2 = c^2$.
- 4. Find the coordinates of the point on the parabola $y^2 = 8x$, whose focal distance is 10.
- 5. Find the value of k if 3x 4y + k = 0 is a tangent to the hyperbola $x^2 4y^2 = 5$.
- 6. Evaluate $\int \frac{1}{1+\cos x} dx$.
- 7. Find $\int \frac{\log(1+x)}{1+x} dx$.
- 8. Evaluate $\int_{0}^{2} |1-x| dx$.
- 9. Find the area enclosed by $y = e^x$, y = x, x = 0, x = 1.
- 10. Find the order and degree to the differential equation $\left[\frac{d^2y}{dx^2} \left(\frac{dy}{dx}\right)^3\right]^{\frac{5}{5}} = 6y$.

SECTION - B

II. Answer any FIVE of the following Short Answer Questions:

- 11. If a point P is moving such that the lengths of tangents drawn from P to the circles $x^2 + y^2 4x 6y 12 = 0$ and $x^2 + y^2 + 6x + 18y + 26 = 0$ are in the ratio 2 : 3 then find the equation of the locus of P.
- 12. If the angle between the circles $x^2 + y^2 12x 6y + 41 = 0$, $x^2 + y^2 + kx + 6y 59 = 0$ is 45°, find k.
- 13. Find the euqations of the tangent to the ellipse $2x^2 + y^2 = 8$ which are
 - a) parallel to x 2y 4 = 0
- b) Perpendicular to x + y + 2 = 0
- c) make an angle 45° with x-axis.
- 14. Find the equations of the tangent and normal to the ellipse $2x^2 + 3y^2 = 11$ at the point whose ordinate is 1.
- 15. Find the centre, eccentricity, foci, length of latus rectum and equations of the directrices of the Hyperbola $x^2 4y^2 = 4$.
- 16. Find the area enclosed by the curve $y = x^2$ and $y = \sqrt{x}$.
- 17. Solve $(x + y + 1) \frac{dy}{dx} = 1$.

III. Answer any FIVE of the following Long Answer Questions.:

 $[5 \times 7 = 35]$

- 18. Find the equation of the circle whose centre lies on the x-axis and passing through (-2, 3) and (4, 5).
- 19. Find the equation of the circle which touches the circle $x^2 + y^2 4x + 6y 12 = 0$ at (-1, 1) internally iwth a radius of 2.
- 20. From an external point P, tangents are drawn to the parabola $y^2 = 4ax$ and three tangents make angle θ_1 , θ_2 with its axis, such that $\tan \theta_1 + \tan \theta_2$ is a constant b. Then show that P lies on the line y = bx.
- 21. Evaluate $\int \frac{2inx + 3\cos x + 4}{3\sin x + 4\cos x + 5} dx.$
- 22. Evaluate $\int \sqrt{\frac{5-x}{x-2}} dx$.
- 23. Show that $\int_{0}^{\pi/2} \frac{x}{\sin x + \cos x} dx = \frac{\pi}{2\sqrt{2}} \log(\sqrt{2} + 1).$
- 24. Solve $\frac{dy}{dx} = \frac{6x + 5y + 7}{2x + 18y 14}$.

* * * * * * * * * * *

PREVIOUS IPE MARCH - 2014

MATHS - 2B

SECTION - A

I. Answer ALL the following Very Short Answer Questions:

 $[10 \times 2 = 20]$

- 1. Find the equation of the circle pssing through the pint (-2, 14) and concentric with $x^2 + y^2 6x 4y 12 = 0$.
- 2. Find the parametric equation of the circle $x^2 + y^2 = 4$.
- 3. Show that the angle between the circles $x^2 + y^2 = a^2$, $x^2 + y^2 = ax + ay$ is $3\pi/4$.
- 4. Find the coordinates of the point on the parabola $y^2 = 8x$, whose focal distance is 10.
- 5. Define Rectangular Hyperbola and find its eccentricity.

6. Evaluate
$$\int \frac{1}{(x+3)\sqrt{x+2}} dx$$

7. Evaluate
$$\int \frac{dx}{(x+1)(x+2)} dx$$
.

8. Evaluate
$$\int_{0}^{2\pi} \sin^2 x \cos^4 x \, dx$$

9. Evaluate
$$\int_{0}^{\pi/2} \frac{\sin^5 x}{\sin^5 x + \cos^5 x} dx$$
.

10. Find the order and degree of
$$\left(\frac{d^3y}{dx^3}\right)^2 - 3\left(\frac{dy}{dx}\right)^2 - e^x = 4$$
.

SECTION - B

II. Answer any FIVE of the following Short Answer Questions:

- 11. If the abscissae of points A, B are the roots of the euqation $x^2 + 2ax b^2 = 0$ and ordinates of A, B are roots of $y^2 + 2py q^2 = 0$, then find the equation of a circle for which \overline{AB} is a diameter.
- 12. Show that the circles $x^2 + y^2 8x 2y + 8 = 0$, $x^2 + y^2 2x + 6y + 6 = 0$ touch eachother and find the point of contact.
- 13. Find the eccentricity, foci, equation of directrices fo ellilpse $9x^2 + 16y^2 = 144$.
- 14. Find the condition for the line $x\cos\alpha + y\sin\alpha = p$ to be a tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- 15. Find the equation of the tangents to the hyperbola $x^2 4y^2 = 4$ which are i) Parallel to and ii) perpendicular to the line x + 2y = 0

16. Evaluate
$$\int_{\pi/6}^{\pi/3} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$$
.

17. Solve cosx.
$$\frac{dy}{dx}$$
 + y sinx = sec² x.

III. Answer any FIVE of the following Long Answer Questions.:

 $[5 \times 7 = 35]$

- 18. Find the equation of the circle passing through (4, 1) (6, 5) and having the centre on the line 4x + 3y 24 = 0.
- 19. Find the equation to the pair of transverse common tangnets to the circles $x^2 + y^2 4x 10y + 28 = 0$ and $x^2 + y^2 + 4x 6y + 4 = 0$.
- 20. Evaluate $\int \frac{2\sin x + 3\cos x + 4}{3\sin x + 3\cos x + 5} dx$.
- 21. Evaluate the reduction formular for $I_n = \int \sin^n x \, dx$ and hence find $\int \sin^4 x \, dx$.
- 22. Prove that the two parabolas $y^2 = 4ax$ and $x^2 = 4by$ intersect (other than the origin) at an angle of $\overline{Tan^{-1}} \left[\frac{3a^{1/3}b^{1/3}}{2(a^{2/3}+b^{2/3})} \right].$
- 23. Show that the area of the region bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is π ab. Hence deduce the area of the circle $x^2 + y^2 = a^2$
- 24. Given the solution of $x \sin^2 \frac{y}{x} dx$ xdy which passes through the point $(1, \pi/4)$.

* * * * * * * * * *

PREVIOUS IPE MAY - 2014

MATHS - 2B

SECTION - A

I. Answer ALL the following Very Short Answer Questions:

 $[10 \times 2 = 20]$

- 1. Find the equation of the circle passing through the point (-2, 14) and concentric with $x^2 + y^2 + 8x + 12y + 15 = 0$.
- 2. Find the value of k if the points (4, 2), (k, -3) are conjugate w.r.to the circle $x^2 + y^2 5x + 8y + 6 = 0$.
- 3. Find the radical cnetre of the circles $x^2 + y^2 + 4x 7 = 0$, $2x^2 + 3x + 5y 9 = 0$ and $x^2 + y^2 + y = 0$.
- 4. If (1/2, 2) is one extremity of a focal chord of the parabola $y^2 = 8x$. Find the coordinates of the other extremity.
- 5. If the angle between teh asymptotes is 30° then find its eccentricity.
- 6. Evaluate $\int \frac{x^2+1}{x^4+1} dx$.
- 7. Evaluate $\int \frac{xe^x}{(x+1)^2}$.
- 8. Evaluate $\int_{0}^{\pi/4} \sin^4 \theta d\theta$.
- 9. Evaluate $\int_{-\pi/2}^{\pi/2} \sin^3 \theta \cos^3 \theta d\theta$.
- 10. Form the differential equation corresponding to $y = A \cos 3x + B \sin 3x$, where A and B are parameters.

SECTION - B

II. Answer any FIVE of the following Short Answer Questions:

 $[5 \times 4 = 20]$

- 11. Find the midpoint of the chord intercepted by $x^2 + y^2 2x 10y + 1 = 0$ the line x 2y + 7 = 0. Also find the length of the chord.
- 12. If the straight line 2x + 3y = 1 intersects the circle $x^2 + y^2 = -4$ at the points A and B, then find the equation of the circle having Ab as its diameter.
- 13. If the normal at one end of a latus rectum of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with eccentricity e, passes through one end of the minor axis, then show that $e^4 + e^2 = 1$.
- 14. The tangent and normal to the ellipse $x^2 + 4y^2 = 4$ at a point $P(\theta)$ on it meets the major axis in Q and

R respectively. If $0 < \theta < \frac{\pi}{2}$ nd QR = 2.

- 15. Find the equation of the tangents to the hyperbola $x^2 4y^2 = 4$ which are i) parallel to and ii) perpendicular to the line x + 2y = 0.
- 16. Find the area of the region bounded by the parablolas $y^2 = 4x$ and $x^2 = 4y$.
- 17. Solve $x \log x \frac{dy}{dx} + y = 2 \log x$.

III. Answer any FIVE of the following Long Answer Questions.:

 $[5 \times 7 = 35]$

- 18. If (2, 0), (0, 1), (4, 5) and (0, c) are concyclic, then find c.
- 19. Prove that the combined equation of the pair of tangents drawn from an external point $P(x_1, y_1)$ to the circle S = 0 is $SS_{11} = S_1^2$.
- 20. If a normal chord a point 't' on the parabola y^2 = 4ax subtends a right angle at vertex, then prove that $t = \pm \sqrt{2}$.
- 21. Evaluate $\int \frac{1}{(1+x)\sqrt{3+2x-x^2}} dx$.
- 22. Obtain the reduction formula for $I_n = \int \cos e c^n x \, dx$, n being a positive integer, $n \ge 2$ and deduce that the value of $\int \cos e c^5 x \, dx$.
- 23. Evaluate $\int_{0}^{\pi} \frac{x \sin x}{1 + \cos^{2} x} dx.$
- 24. Solve $(x^3 3xy^2) dx + (3x^2u y^3) dy = 0$.

* * * * * * * * * * * * *

PE: MARCH - 2015 (AP)

MATHS - 2B

SECTION - A

I. Answer ALL the following Very Short Answer Questions:

 $[10 \times 2 = 20]$

- 1. Find the value of 'a' if $2x^2 + ay^2 3x + 2y 1 = 0$ represents a circle and also find its radius.
- 2. If the length of a tangent from (5, 4) to the circle $x^2 + y^2 + 2ky = 0$ is '1', then find 'k'.
- 3. Find the equation of the common chord of the circles: $(x a)^2 + (y b)^2 = c^2$, $(x b)^2 + (y a)^2 = c^2$ ($a \ne b$).
- 4. Find the co-ordinates of the points on the parabola "yy² = 2x whose focal distance is $\frac{5}{2}$.
- 5. Define rectangular hyperbola and find its eccentricity.
- 6. Find $\int \frac{e^x(1+x\log x)}{x} dx$.
- 7. Find $\int \frac{\sin(Tan^{-1}x)}{1+x^2} dx$, $x \in R$.
- 8. Evaluate $\int_{0}^{\frac{\pi}{2}} \sin^{5} x \cos^{4} x dx$
- 9. Evaluate $\int_{0}^{2} |1-x| dx$
- 10. From the differential equation corresponding to $y = A \cos 3x + B \sin 3x$, where A and B are parameters.

SECTION - B

II. Answer any FIVE of the following Short Answer Questions:

- 11. Find the equation of circle whose centre lies on the x-axis and passing thrugh (-2, 3) and (4, 5).
- 12. If x + y = 3 is the equation of the chord AB of the circle $x^2 + y^2 2x + 4y 8 = 0$, find the equation of the circle having AB as diameter.
- 13. Find the equation of tangent and normal to the ellipse $9x^2 + 16y^2 = 144$ at the end of the latus rectum in the first quadrant.
- 14. Find the value of 'k' if 4x + y + k = 0 is a tangent to the ellipse $x^2 + 3y^2 = 3$.
- 15. Find the equation of the tangents to the hyperbola $3x^2 4y^2 = 12$ which are i) parallel and ii) perpendicular to the line y = x 7.
- 16. Find $\int_{0}^{\frac{\pi}{2}} \frac{dx}{4 + 5\cos x} dx$.
- 17. Solve the differential equation $(xy^2 + x) dx + (yx^2 + y) dy = 0$.

III. Answer any FIVE of the following Long Answer Questions.:

 $[5 \times 7 = 35]$

- 18. If (2, 0), (0, 1), (4, 5) and (0, c) are concyclic, then find c.
- 19. Find the transverse common tangents of the circles $x^2 + y^2 4x 10y + 28 = 0$ and $x^2 + y^2 + 4x 6y + 4 = 0$
- 20. Evaluate $\int \frac{2\cos x + 3\sin x}{4\cos x + 5\sin x} dx$.
- 21. Obtain reduction formula $\int \tan^n x \, dx$ for integer $n \ge 2$ and evaluate $\int \tan^6 x \, dx$.
- 22. Derive the standard form of the parabola.
- 23. Evaluate $\int_{0}^{\pi} \frac{x \sin x}{1 + \sin x} dx$.
- 24. Solve $(1 + y^2) dx = (\tan^{-1} y x) dy$.

* * * * * * * * * * * * *

IPE: MARCH - 2015 (TS)

MATHS - 2B

SECTION - A

I. Answer ALL the following Very Short Answer Questions:

 $[10 \times 2 = 20]$

- 1. If the length of the tangent from (5, 4) to the circle $x^2 + y^2 + 2ky = 0$ is 1, then find k.
- 2. Find the equation of the polar of (1, -2) with respect to circle $x^2 + y^2 = 10x 10y + 25 = 0$.
- 3. Find the angle between the circles $x^2 + y^2 12xx 6y + 41 = 0$ and $x^2 + y^2 + 4x + 6y 59 = 0$.
- 4. Find the equation of parabola whose focus is S(1, -7) and vertex is A(1, -2).
- 5. If the eccentricity of a hyperbola is $\frac{5}{4}$, then find the eccentricity of its conjugate hyperbola.
- 6. Evaluate $\int \frac{\text{Log}(1+x)}{1+x} dx$ on (-1, ∞).
- 7. Evaluate $\int \frac{1}{1+\cos x} dx$ on $I \subset R \{(2n+1)\pi : n \in z\}$.
- 8. Evaluate $\int_{1}^{5} \frac{dx}{\sqrt{2x-1}}$.
- 9. Find the value of $\int_{0}^{2\pi} \sin^2 x \cdot \cos^4 x \, dx$
- 10. Find the order and degree of the differential equation $x^{1/2} \left(\frac{d^2y}{dx^2} \right)^{1/3} + x \cdot \frac{dy}{dx} + y = 0$.

SECTION - B

II. Answer any FIVE of the following Short Answer Questions:

- 11. Find the equation of circle whose centre lies on the x-axis and passing through the points (-2, 3) nd (4, 5).
- 12. Show that the circle $S = x^2 + y^2 2x 4y 20 = 0$, $S' = x^2 + y^2 + 6x + 2y 90 = 0$ touch each other internally. Find their point of contact.
- 13. Find the equation of the ellipse in the standard form whose distance between foci is 2 and the length of latus rectum is $\frac{15}{2}$.
- 14. Find the eccentricity and length of latus rectum of the ellipse $9x^2 + 16y^2 36x + 32y 92 = 0$.
- 15. Find the equation of the tangent to the hyperbola $x^2 4y^2 = 4$ which are i) parallel and ii) perpendicular to the line x + 2y = 0
- 16. Obtain the reduction formula for $\int_{0}^{\pi/2} \sin^{n} x.dx$ for an integer $n \ge 2$.
- 17. Solve the differential equation $(1 + x^2) \frac{dy}{dx} + y = e^{Tan^{-1}x}$.

III. Answer any FIVE of the following Long Answer Questions.:

 $[5 \times 7 = 35]$

- 18. If (2, 0), (0, 1), (4, 5) and (0, c) are concyclic, then find c.
- 19. Find the direct common tangents of the circles $x^2 + y^2 22x 4y 100 = 0$ and $x^2 + y^2 22x 4y + 100 = 0$.
- 20. Prove that the area of the triangle formed by the tangents at (x_1, y_1) , (x_2, y_2) and (x_3, y_3) to the parabola $y^2 = 4ax$ (a > 0) is
- 21. Evaluate $\int \frac{1}{1+\sin x + \cos x} dx$.
- 22. Evaluate $\int \frac{2x+5}{\sqrt{x^2-2x+10}} dx$.
- 23. Evaluate $\int_{0}^{\pi} \frac{x \sin^{3} x}{1 + \cos^{2} x} dx.$
- 24. Solve the differential equation (2x y + 1) dx + (4x + 2y 1) dy = 0.

* * * * * * * * * * * * * * * *

IPE: MAY-2015 (TS)

MATHS - 2B

SECTION - A

I. Answer ALL the following Very Short Answer Questions:

 $[10 \times 2 = 20]$

- 1. Find the equation of circle passing through (-2, 3) and having centre at (0, 0).
- 2. Find the value of k if the length of tangent from (5, 4) to $x^2 + y^2 + 2ky = 0$ is 1.
- 3. Find the angle between the circles $x^2 + y^2 12x 6y + 41 = 0$ and $x^2 + y^2 + 4x + 6y 59 = 0$.
- 4. Find the equation of the parabola whose focus is (1, -7) & vertex is (1, -2).
- 5. If the eccentricity of a hyperbola is 5/4, then find the eccentricity of its conjugate hyperbola.
- 6. Evaluate $\int \left(x + \frac{4}{1 + x^2}\right) dx$.
- 7. Evaluate $\int e^x (\tan x + \log \sec x) dx$.
- 8. Evaluate $\int_{0}^{\pi} \sin^{3} x \cos^{3} x dx$
- 9. Evaluate $\int_{0}^{4} \frac{x^2}{1+x} dx$.
- 10. Find the order and degree to the differential equation $\left[\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^3\right]^{\frac{6}{5}} = 6y$.

SECTION - B

II. Answer any FIVE of the following Short Answer Questions:

- 11. Find the value of k if kx + 3y 1 = 0 and 2x + y + 5 = 0 are conjugate with respect to the circle $x^2 + y^2 2x 4y 4 = 0$.
- 12. Find the equation of the circle passing through the point (0, -3) and cutting orthogonally the circles $x^2 + y^2 6x + 3y + 5 = 0$, $x^2 + y^2 x 7y = 0$.
- 13. Find the eccentricity, coordinates of foci, Length of latus rectum and equations of directrices of the ellipse $9x^2 + 16y^2 36x + 32y 92 = 0$.
- 14. Find the euqations of the tangent and normal tothe ellipse $9x^2 + 16y^2 = 144$, which make equal intercepts on the coordinate axes.
- 15. Find the equation of the tangents to the hyperbola $3x^2 4y^2 = 12$ which are (i) Parallel to (ii) Perpendicular to the line y = x 7.
- 16. Evaluate $\int_{0}^{\pi/4} \frac{\sin x + \cos x}{9 + 16 \sin 2x} dx$
- 17. Solve $\frac{dy}{dx} x \tan(y x) = 1$.

III. Answer any FIVE of the following Long Answer Questions.:

 $[5 \times 7 = 35]$

- 18. Find the equation of the circle passing through the three points (1, 2), (3, -4), (5, -6) and (19, 8) are concyclic.
- 19. Find the direct common tangents to the circles $x^2 + y^2 + 22x 4y 100 = 0$, $x^2 + y^2 22x + 4y + 100 = 0$.
- 20. Prove that the area of the triangle insecribed in the parabola $y^2 = 4ax$ with vertices (x_1, y_2) , (x_2, y_2) , (x_3, y_3) is $\frac{1}{8a} |(y_1 y_2), (y_2 y_3) (y_3 y_1)|$ sq. units.
- 21. Evaluate $\int (3x-2)\sqrt{2x^2-x+1} dx$.
- 22. If $I_n = \int \sec^n dx$ then prove that $I_n = \int \frac{\sec^{n-2} x \tan x}{n-1} + \frac{(n-2)}{n-1} I_{n-2}$.
- 23. Evaluate $\int_{0}^{\pi/2} \frac{\sin^2 x}{\cos x + \sin x} dx.$
- 24. Solve $(1 + y^2) dx = (Tan^{-1}y x) dy$.

* * * * * * * * * * *

IPE: MARCH - 2016 (AP)

MATHS - 2B

SECTION - A

I. Answer ALL the following Very Short Answer Questions:

 $[10 \times 2 = 20]$

- 1. If hte circle $x^2 + y^2 4x + 6y + a = 0$ has radius 4 then find a.
- 2. Obtain parametric equations of the circle $(x 3)^2 + (y 4)^2 = 8^2$.
- 3. Find k if the pairs of circles $x^2 + y^2 + 4x + 8 = 0$, $x^2 + y^2 16y + k = 0$ are orthogonal.
- 4. Find the coordinates of the points on the parabola $y^2 = 8x$, whose focal distance is 10.
- 5. If the eccentricity of a hyperbola is 5/4, then find the eccentricity of its conjugate hyperbola.
- 6. Evaluate $\int \frac{1}{\cosh x + \sinh x} dx$.
- 7. Evaluate $\int \frac{x^8}{1+x^{18}} dx$.
- 8. Evaluate $\int_{-\pi/2}^{\pi/2} \sin^2 x \cdot \cos^4 x \, dx$.
- 9. Evaluate $\int_{0}^{\pi} \sqrt{2 + 2\cos\theta} \ d\theta$.
- 10. Find the order and degree to the differential equation $\left[\frac{d^2y}{dx^2} \left(\frac{dy}{dx}\right)^3\right]^{\frac{5}{5}} = 6y$.

<u>SECTION - B</u>

II. Answer any FIVE of the following Short Answer Questions:

- 11. Find the pole of the line 3x + 4y 45 = 0 w.r.to the circle $x^2 + y^2 6x 8y + 5 = 0$.
- 12. Find the equation of the circle which cuts the circles $x^2 + y^2 + 4x 6y + 11 = 0$ and $x^2 + y^2 10x 4y + 21 = 0$ orthogonally and has the diameter along the straight line 2x + 3y = 7.
- 13. Show that the points of intersection of the perpendicular tangents to an ellipse lie on a circle.
- 14. Find the value of k if 4x + y + k = 0 is a tangent to the ellipse $x^2 + 3y^2 = 3$.
- 15. Find the centre, foci, eccentricity, equation of directrices of the Hyperbola x^2 $4y^2$ = 4.
- 16. Evaluate $\int_{0}^{\pi/2} \frac{dx}{4 + 5\cos x}$.
- 17. Solve $(1 + x^2) \frac{dy}{dx} + y = e^{Tan^{-1}x}$.

III. Answer any FIVE of the following Long Answer Questions.:

 $[5 \times 7 = 35]$

- 18. Find the equation of the circle passing through (4, 1) (6, 5) and having the centre on the line 4x + 3y 24 = 0.
- 19. Show that the circles $x^2 + y^2 6x 2y + 1 = 0$ and $x^2 + y^2 + 2x 8y + 13 = 0$ touch each other. Find the point of contact and the equation of the common tangent at their point of contact.
- 20. Show that the common tangent to the parabola $y^2 = 4ax$ and $x^2 = 4by$ is $xa^{1/3} + yb^{1/3} + a^{2/3}b^{2/3} = 0$.
- 21. Evaluate $\int \frac{2inx + 3\cos x + 4}{3\sin x + 4\cos x + 5} dx$.
- 22. Obtain the reduction formula for $I_n = \int \cos e c^n x \, dx$, n being a positive integer, $n \ge 2$ and deduce that the value of $\int \cos e c^4 x \, dx$.
- 23. Evaluate $\int_{0}^{\pi/4} \log(1+\tan x) dx$
- 24. Solve the differential equation $(x^2 + y^2) dx = 2xydy$.

* * * * * * * * * * *

IPE: MARCH - 2016 (TS)

MATHS - 2B

SECTION - A

I. Answer ALL the following Very Short Answer Questions:

 $[10 \times 2 = 20]$

- 1. Find the power of the point P(-1, 1) with respect to the circle $x^2 + y^2 6x + 4y 12 = 0$.
- 2. Find the value of k if the points (1, 3), (2, k) are conjugate w.r.to the circle $x^2 + y^2 = 35$.
- 3. Find k if the paris of circles are $x^2 + y^2 4x + 8 = 0$ and $x^2 + y^2 6y + k = 0$ are orthogonal.
- 4. Find the value of k, if the line 2y = 5x + k is a tangent to the parabola $y^2 = 6x$.
- 5. Find the equation of the hyperbola whose foci are $(\pm 5, 0)$, the transverse axis is of length 8.
- 6. Evaluage $\int \sqrt{x} \log x \, dx$ on $(0, \infty)$.
- 7. Evaluate $\int \sec^2 x . \cos ec^2 x \, dx$ on $I \subset R$ $\left(\{ n\pi : n \in z \} \cup \{ (2n+1) \frac{\pi}{2} : n \in Z \} \right)$.
- 8. Evaluate $\int_{2}^{3} \frac{2x}{1+x^2} dx$.
- 9. Evaluate $\int_{0}^{a} \sqrt{a^2 x^2} dx$
- 10. Form the differential equation corresponding to the family of curves $y = c (x c)^2$, where c is a parameter.

SECTION - B

II. Answer any FIVE of the following Short Answer Questions:

- 11. Find the length of the chord intercepted by the circle $x^2 + y^2 8x 2y 8 = 0$ on the line x + y + 1 = 0.
- 12. If the two circles $x^2 + y^2 + 2gx + 2fy = 0$, $x^2 + y^2 + 2g'x + 2f'y = 0$ touch each other, then show that f'g = fg'.
- 13. Find the eccentricity, foci, length of the Latus rectum and the equation of directrices of the ellipse $9x^2 + 16y^2 = 144$.
- 14. Find the equations of the tangent and normal to the ellipse $2x^2 + 3y^2 = 11$ at the point whose ordinate is 1.
- 15. Prove that the point of intersection of two perpendicular tangents to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = -1 = 0$, lies on the circle $x^2 + y^2 = a^2 b^2$.
- 16. Find the area of the region enclosed by the curves $y = 4x x^2$, y = 5 2x.
- 17. Solve the differential equation $\frac{dy}{dx}$ + y tan x = sin x.

III. Answer any FIVE of the following Long Answer Questions.:

 $[5 \times 7 = 35]$

- 18. Find the equation of the circle passing through the three points (1, 2), (3, -4), (5, -6).
- 19. Find the pair of tangents drawn from (1, 3) to the circle $x^2 + y^2 2x + 4y 11 = 0$ and also find the angle between them.
- 20. Show that the equation of the parabola in standard form is $y^2 = 4ax$.
- 21. Evaluate $\int \frac{2inx + 3\cos x + 4}{3\sin x + 4\cos x + 5} dx$.
- 22. Obtain the reduction formula for $I_n = \int \cos e c^n x \, dx$, n being a positive integer, $n \ge 2$ and deduce that the value of $\int \cos e c^5 x \, dx$.
- 23. Evaluate $\int_{0}^{\pi} \frac{x \sin x}{1 + \sin x} dx.$
- 24. Solve $\frac{dy}{dx} = \frac{3y 7x + 7}{3x 7y 3}$.

* * * * * * * * * * * *

IPE: MAY - 2016 (AP)

MATHS - 2B

SECTION - A

I. Answer ALL the following Very Short Answer Questions:

 $[10 \times 2 = 20]$

- 1. If the length of the tangent from (5, 4) to the circle $x^2 + y^2 + 2ky = 0$ is 1, then find k.
- 2. Find the pole of ax + by + c = 0 (c \neq 0) with respect to x^2 + y^2 = t^2 .
- 3. Find the equation of the radical axis of the circles $x^2 + y^2 2x 4y 1 = 0$, $x^2 + y^2 4x 6y + 5 = 0$.
- 4. Find the equation of tangent to the parabola $y^2 = 16x$ inclined at an angle 60^0 with its axis.
- 5. If the eccentricity of a hyperbola is 5/4, then find the eccentricity of its conjugate hyperbola.
- 6. Evaluate the integral $\int \frac{(3x+1)^2}{2x} dx$, $x \in I \subset R / \{0\}$
- 7. Evaluate the integral $\int e^x (\sec x + \sec x \tan x) dx$.
- 8. Evaluate $\int_{0}^{\pi} \sqrt{2 + 2\cos\theta} \,d\theta$
- 9. Evaluate the definite intergral $\int_{0}^{\pi/2} \sin^{6} x \cdot \cos^{4} x \, dx$.
- 10. Find the general solution of $x + y \frac{dy}{dx} = 0$.

SECTION - B

II. Answer any FIVE of the following Short Answer Questions:

- 11. Find the length of the chord intercepted by the circle $x^2 + y^2 x + 3y 22 = 0$ on the line y = x 3.
- 12. If x + y = 3 is the equation of the chord AB of the circle $x^2 + y^2 2x + 4y 8 = 0$, find the equation of the circle having \overline{AB} as diameter.
- 13. Find the equation of the ellipse, if focus at = (1, -1), e = 2/3 and directrix is x + y + 2 = 0.
- 14. The tangent and normal to the ellipse $x^2 + 4y^2 = 4$ at a point $P(\theta)$ on it meets the major axis in Q and R respectively. If $0 < \theta < \pi/2$ and QR = 2, then show that = $\theta = \cos^{-1}\left(\frac{2}{3}\right)$.
- 15. Find the centre, foci, eccentriicty, equation of the directrices of the hyperbola $x^2 4y^2 = 4$.
- 16. Find the area enclosed by the curves $y = x^2 + 1$, y = 2x 2, x = -1, x = 2.
- 17. Solve the differential equation $(1 + x^2) \frac{dy}{dx} + y = \tan^{-1} x$.

III. Answer any FIVE of the following Long Answer Questions.:

 $[5 \times 7 = 35]$

- 18. Find the equation of the circle passing through each of the three points (3, 4), (3, 2) and (1, 4).
- 19. Show that the circles $x^2 + y^2 6x 2y + 1 = 0$ and $x^2 + y^2 + 2x 8y + 13 = 0$ touch each other. Find the point of contact and the equation of the common tangent at their point of contact.
- 20. Find the equation of the parabola whose axis is parallel to the x-axis and which passes through the points (-2, 1), (1, 2) and (-1, 3).
- 21. Evaluate hte integral $\int \frac{x+1}{x^2+3x+12} dx$.
- 22. Obtain reduction formula $\int tan^n x dx$ for integer $n \ge 2$ and evaluate $\int tan^6 x dx$.
- 23. Evaluate the integral $\int_{0}^{\pi} \frac{x \sin x}{1 + \cos^{2} x} dx$.
- 24. Find the equation of a curve whose gradient is $\frac{dy}{dx} = \frac{y}{x} \cos^2\left(\frac{x}{y}\right)$, where x > 0, y > 0 and which passes through the point $\left(1, \frac{\pi}{4}\right)$.

* * * * * * * * * * * *

IPE: MAY - 2016 (TS)

MATHS - 2B

SECTION - A

I. Answer ALL the following Very Short Answer Questions:

 $[10 \times 2 = 20]$

- 1. Find the length of the tangent from (-2, 5) to the circle $x^2 + y^2 25 = 0$.
- 2. Find the length of the chord formed by $x^2 + y^2 = a^2$, on the line $x\cos\alpha + y\sin\alpha = p$.
- 3. Show that the angle between the circles $x^2 + y^2 = ax + ay$ is $\frac{3\pi}{4}$.
- 4. If $\left(\frac{1}{2},2\right)$ is one extremity of a focal chord of the parabola $y^2 = 8x$. Find the coordinates of the other extremity.
- 5. Find the product of lengths of the perpendiculars from any point on the $\frac{x^2}{16} \frac{y^2}{9} = 1$ hyperbola to its asymptotes.
- 6. Evaluate $\int \frac{e^x(1+x)}{\cos^2(xe^x)} dx$.
- 7. Evaluate on $\int \left(\frac{1}{1+x^2} + \frac{1}{1+x^2}\right) dx$ on (-1, 1).
- 8. Evaluate $\int_{0}^{2} |1-x| dx$
- 9. Find the area bounded by the parabola $y = x^2$ the x-axis and the lines x = -1, x = 2.
- 10. Form the differential equation corresponding to $y = A \cos 3x + B \sin 3x$, where A and B are parameters.

SECTION - B

II. Answer any FIVE of the following Short Answer Questions:

- 11. Find the condition that the tangents drawn from (0, 0) to $S = x^2 + y^2 + 2gx + 2fy + c = 0$ be perpendicular to eachother.
- 12. Find the readical center of the circles $x^2 + y^2 + 4x 7 = 0$, $2x^2 + 2y^2 + 3x + 5y 9 = 0$ and $x^2 + y^2 + y = 0$.
- 13. Prove that the equation of the chord joining the points α and β on the ellipse $\frac{x}{a^2} \frac{y^2}{b^2} = 1$ is

$$\frac{x}{a} \cos\left(\frac{\alpha+\beta}{2}\right) + \frac{y}{b}\sin\left(\frac{\alpha+\beta}{2}\right) = \cos\left(\frac{\alpha-\beta}{2}\right).$$

- 14. Find the equation of tangent and normal to the ellipse $x^2 + 8y^2 = 33$ at (-1, 2).
- 15. Tangents to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ make angles θ_1 , θ_2 with transverse axis of a hyperbola. Show that the point of intersection of these tangents lies on the curve $2xy = k(x^2 a^2)$ when $\tan \theta_1 + \tan \theta_2 = k$.
- 16. Find $\int_{-\pi/2}^{\pi/2} \sin^2 x \cos^4 x \, dx$.
- 17. Solve $\frac{dy}{dx} = \frac{xy + y}{xy + x}$

III. Answer any FIVE of the following Long Answer Questions.:

 $[5 \times 7 = 35]$

- 18. Find hte equation of the circle passing through each of the three points (3, 4), (3, 2) and (1, 4).
- 19. Find the equation of the circle which touches the circle $x^2 + y^2 2x 4y 20 = 0$ externally at (5, 5) with radius 5.
- 20. Show that the equation of common tangents to the circle $x^2 + y^2 = 2a^2$ and the parabola $y^2 = 8ax$ are $y = \pm (x + 2a)$.
- 21. Evaluate $\int \frac{2\cos x + 3\sin x \sin x}{4\cos x + 5\sin x} dx$.
- 22. If $I_n = \int \cos^n x \, dx$, then show that $I_n = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n} I_{n-2}$ n being a positive integer $n \ge 2$.
- 23. Evaluate $\int_{0}^{\pi/4} \log(1+\tan x) dx$
- 24. Find the equation of a curve whose gradient is $\frac{dy}{dx} = \frac{y}{x} \cos^2\left(\frac{x}{y}\right)$, where x > 0, y > 0 and which passes through the point $\left(1, \frac{\pi}{4}\right)$.

* * * * * * * * * * * * * * *

IPE: MARCH - 2017 (AP)

MATHS - 2B

SECTION - A

I. Answer ALL the following Very Short Answer Questions:

 $[10 \times 2 = 20]$

- 1. Find teh equation of circle with centre (1, 4) and radius 5.
- 2. Find the value of k if the points (1, 3), (2, k) are conjugate w.r.to the circle $x^2 + y^2 = 35$.
- 3. Find the equation of the radical axis of the circles $2x^2 + 2y^2 + 3x + 6y 5 = 0$, $3x^2 + 3y^2 7x + 8y 11 = 0$.
- 4. Find the coordinates of the point on the parabola $y^2 = 8x$, whose focal distance is 10.
- 5. If the eccentricity of a hyperbola is 5/4, then find the eccentricity of its conjugate hyperbola.
- 6. Evaluate $\int e^x \sin e^x dx$.
- 7. Evaluate $\int e^x(\sin x + \cos x) dx$.
- 8. Evaluate $\int_{2}^{3} \frac{2x \, dx}{1 + x^2}$.
- 9. Evaluate $\int_{0}^{\pi/2} \sin^7 x \, dx$
- 10. Find the general solution of $\frac{dy}{dx} = \frac{2y}{x}$.

SECTION - B

II. Answer any FIVE of the following Short Answer Questions:

- 11. Find the pole of the line x + y + 2 = 0 w.r.t. the circle $x^2 + y^2 4x + 6y 12 = 0$.
- 12. Find the equation and length of the common chord of the two circles $x^2 + y^2 + 2x + 2y + 1 = 0$ and $x^2 + y^2 + 4x + 3y + 2 = 0$.
- 13. Find the length of latus rectum, eccentricity, co-ordinates of centre and foci of the ellipse $9x^2 + 16y^2 = 144$.
- 14. Show that the locus of the feet of the perpendiculars drawn from either of the foci to any tangent to the ellipse is the auxillary circle.
- 15. Find the equations of the tangents to the hyperbola $3x^2 4y^2 = 12$. which are i) parallel and ii) perpendicular to the line y = x 7.
- 16. Evaluate $\int_{0}^{\pi/2} \frac{\sin^{5} x}{\sin^{5} x + \cos^{5} x} dx$.
- 17. Solve the differential equation $\frac{dy}{dx}$ + y tan x = cos³ x.

III. Answer any FIVE of the following Long Answer Questions.:

 $[5 \times 7 = 35]$

- 18. If (2, 0), (0, 1), (4, 5) and (0, c) are concyclic then find c.
- 19. Show that the circles $x^2 + y^2 4x 6y 12 = 0$ and $x^2 + y^2 + 6x + 18y + 26 = 0$ touch each other. Find the point of contact and common tangent.
- 20. Show that the equation of the parabola in the standard form is $y^2 = 4ax$.
- 21. Evaluate $\int \frac{x+1}{x^2+3x+12}$.
- 22. Obtain reduction formula for $I_n = \int \sin^n x \, dx$ n being a positive integer, $n \ge 2$ and deduce the value of $\int \sin^4 x \, dx$.
- 23. Evaluate $\int_{0}^{\pi/4} \frac{\sin x + \cos x}{9 + 16 \sin 2x} dx$.
- 24. Solve the differential equation $(x^2 + y^2) dx = 2xydy$.

* * * * * * * * * * *

IPE: MARCH - 2017 (TS)

MATHS - 2B

SECTION - A

I. Answer ALL the following Very Short Answer Questions:

 $[10 \times 2 = 20]$

- 1. Obtain the parametric equation of the circle $4(x^2 + y^2) = 9$.
- 2. Find the value of k if the points (4, 2), (k, -3) are conjugate w.r.to the circle $x^2 + y^2 5x + 8y + 6 = 0$.
- 3. Find the angle between the circles $x^2 + y^2 12x 6y + 41 = 0$ and $x^2 + y^2 + 4x + 6y 59 = 0$.
- 4. Find the coordinates of the point on the parabola $y^2 = 8x$, whose focal distance is 10.
- 5. Find the value of k if 3x 4y + k = 0 is a tangent to the hyperbola $x^2 4y^2 = 5$.
- 6. Evaluate $\int \frac{1}{\cosh x + \sinh x} dx$.
- 7. Evaluate $\int \frac{e^x(1+x)}{\cos^2(xe^x)} dx$.
- 8. Evaluate $\int_{-\pi/2}^{\pi/2} \sin |x| dx$.
- 9. Evaluate $\int_{0}^{3} \frac{x}{\sqrt{x^2 + 16}} dx$
- 10. Find the order of the differential equation of the family of all circles with their centres at the origin.

SECTION - B

II. Answer any FIVE of the following Short Answer Questions:

- 11. If a point P is moving such that hte lengths of tangents drawn form P to the circles $x^2 + y^2 4x 6y 12 = 0$ and $x^2 + y^2 + 6x + 18y + 26 = 0$ are in the ratio 2 : 3 then find the equation of the locus of P.
- 12. Find the equation and length of the common chord of the two circles $x^2 + y^2 + 2x + 2y + 1 = 0$ and $x^2 + y^2 + 4x + 3y + 2 = 0$.
- 13. Find the equation of ellipse in the standard form, if passes through the points (-2, 2) nd (3, -1).
- 14. Find the equations of the tangent to the ellipse $2x^2 + y^2 = 8$ which are i) Paralle to x 2y 4 = 0 ii) perpendicualr to x + y + 2 = 0
- 15. if e e₁ are the eccentricities of a hyperbola and its conjugate hyperbola then prove that $\frac{1}{e^2} + \frac{1}{e^2} = 1$.
- 16. Find the area of the region bounded by the parabolas $y^2 = 4x$ and $x^2 = 4y$.
- 17. Solve $(x + y + 1) \frac{dy}{dx} = 1$.

III. Answer any FIVE of the following Long Answer Questions.:

 $[5 \times 7 = 35]$

- 18. If (2, 0), (0, 1), (4, 5) and (0, c) are concyclic then find c.
- 19. Find the equation to the pair of transverse common tangents to the circles $x^2 + y^2 4x 10y + 28 = 0$ and $x^2 + y^2 + 4x 6y + 4 = 0$.
- 20. Derive the equation of a parabola in the standard form $y^2 = 4ax$ with diagram.
- 21. Evaluate $\int \frac{9\cos x \sin x}{4\sin x + 5\cos x} dx$.
- 22. If $I_n = \int \cos^n x \, dx$, then show that $I_n = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n} I_{n-2}$ and hence deduce the value of $\int \cos^4 x \, dx$.
- 23. Show that $\int_{0}^{\pi/2} \frac{x}{\sin x + \cos x} dx = \frac{\pi}{2\sqrt{2}} \log(\sqrt{2} + 1).$
- 24. Solve the differential equation (x y) dy = (x + y + 1) dx.

* * * * * * * * * * * * * *